EVALUATION OF WOOD DAMAGE AND FRACTURE BEHAVIOR BASED ON ENERGY ENTROPY OF ACOUSTIC EMISSION SIGNALS
In order to assess the damage and fracture behavior of wood under continuous loading, an energy entropy and b-value associated with the acoustic emission (AE) signal were defined to quantitatively describe the release of strain energy during loading. Firstly, the acoustic emission signals of the wood in the three-point bending test were collected. This paper presents the concept of energy entropy according to the definition of information entropy. In order to further evaluate the strain energy intensity released by the damage behavior of the wood specimen, the acoustic emission b-value was defined. Finally, by jointly analysing the dynamics of these two parameters, the test process can be divided into three phases. The results show that even in the elastic phase, micro-destructive behavior occur inside the wood specimen; in the plastic phase, the wood specimen is not only subjected to macroscopic damage, but also often accompanied by fine cracks inside