Development of bonding strength of modified birch veneers during adhesive curing

This study investigated the bonding strength development of furfurylated, N-methylol melamine (NMM) modified and thermally treated birch veneers glued with hot curing phenol formaldehyde (PF) adhesive in different pressing (20, 160 s) and open assembly times (20 s, 10 min). For testing, the automated bonding evaluation system ABES was used with 2 N.mm-2 applied pressure at 130°C. The bonding strength of both modified and unmodified samples increased significantly by prolongation of the pressing time from 20 to 160 s in all cases and for both open assembly times. A deviation was observed for the samples treated at 220°C and at 20 s open assembly time. With the exception of NMM modified veneers, bonding strength did not change significantly by increasing the assembly time in the case of 20 s pressing for both modified and unmodified samples. At 160 s pressing time, extension of the assembly time developed a better bonding for controls, NMM modified and thermally treated veneers at 180°C. The combination of 10 min assembly time and 160 s pressing time proved as the optimal bonding condition for controls, NMM modified and thermally treated veneers at 180°C while the highest bonding strength was noted in 20 assembly time and 160 s pressing time for furfurylated veneers. In most of the cases modification affected negatively the bonding performance of the veneers, in particular for furfurylated and NMM modified samples.

Adhesives from liquefied eucalypt bark and branches

Adhesives made from lignin are one of the most promising alternatives to common ureaformaldehyde adhesives. One of the possible sources is from wood or bark liquefaction at low temperatures and pressure. The possibility of using forest wastes for the production of adhesives was the objective of this work. Eucalypt bark and branches are wastes produced in the company Pedrosa & Irmãos, which is a forest management company based in Portugal (Leiria). The wastes were liquefied with polyalcohols catalyzed by sulfuric acid. The water insoluble fraction of the liquefied material was used for the production of the bio-adhesive. Both fractions were characterized and the bonding performance of the bio-adhesive was tested by ABES. The bio-adhesives obtained from bark or branches were similar, exhibiting a bonding strength approximately half of the conventional UF resin.