Grafting organic-inorganic compound modifier onto wood cell walls for enhanced mechanical strength in wood composites
The present study describes the possibility to polymerize functional composite modifier within wood cell walls to obtain functional wood composites (FWCs) with poplar wood acting as the base template. The physical and mechanical properties of the composites, including density, bending strength, compressive strength parallel to grain, surface hardness and water uptake, were evaluated. The FWCs were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD). According to the results, the functional composite modifiers were successfully in situ deposited into the wood structure by kiln drying. The chemical treatment not only significantly improved the physical and mechanical properties of wood, but also provided the wood with better hydrophobic properties. The abbreviations for substances used in this study are: N-wood (natural wood), MD-wood (methylolurea/DMDHEU copolymerization treated wood), FCM-wood (functional composite modifier treated wood).