COMPARISON OF TWO METHOD FOR ISOLATION OF FIBRILLATED CELLULOSE FROM LIGNOCELLULOSIC BIOMASS

Fibrillated cellulose from distillery refuse based on maize starch was prepared by two different procedures. The effect of sonification was evaluated atacid-alkali extractionas well as the type of used acid. The results from the alkali-acid procedure were compared with these obtained by method of steam explosion at different temperatures. The acid-alkali method brings a better result regarding degradation of hemicellulose and lignin as well as cellulose. Lignin/hemicellulose were only released from lignocellulose network using steam explosion at 120-180°C. At higher temperature, the results were comparable with those obtained by acid-alkali method. Similarly pore size distribution of filter paper decreased more significantly when fibrillated cellulose from acid-alkali treatment was applied. After steam explosion, higher extend of longer still fibres remains

ENZYMATIC HYDROLYSIS OF STEAM EXPLODED STRAW WITH THE ADDITION OF ACETIC ACID

The effect of steam explosion on the enzymatic hydrolysis of straw was investigated in the presence of 5, 10, 15 and 20% wt. addition of acetic acid. Analysis was performed at temperatures of 160, 170, 180, 190, 200 and 210°C. The concentration of monosaccharides obtained after enzymatic hydrolysis was considered the main indicator of the increased availability of cellulose due to their release into the solution. The results indicate that the addition of acetic acid increases the concentration of monosaccharides, but only at lower temperatures. The temperature of 180°C corresponded to the most effective pretreatment by steam explosion in the presence of acetic acid with the highest concentration of 10%, which corresponds to the conversion of polysaccharides to monosaccharides of 74.78%. At high temperatures above 200°C, the addition of acetic acid results in a decrease in the concentration of monosaccharides due to the high severity factor in the range of 3.94 – 4.24

Effect of prehydrolysis on enzymatic hydrolysis of two-stage pretreated wheat straw

The effect of water prehydrolysis conditions, which was used as the first stage of wheat straw pretreatment, on the composition of filtrates was analysed. Many of the substances that are present in the prehydrolysis filtrates are broadly used and thus they contribute to improvements in the efficiency of bioethanol production. Prehydrolysis was carried out at temperatures of 140, 160 and 180°C and times of 30, 60 and 120 min. Xylose and its oligomers were the most represented in prehydrolysis filtrates, their yields increased up to 12.1 % with increasing weight of wheat straw removed up to 28.6 %. Besides xylose and glucose, acetic acid, formic acid and the phenolic compounds were also present in the prehydrolysis filtrates. At 160 and 180°C, levulinic acid and furfural and hydroxymethylfurfural, respectively, were also present. The solid fractions of wheat straw were subjected to steam explosion under the same conditions at 200°C for 2 min. Two-stage pretreated wheat straw was subsequently enzymatically hydrolysed. The conditions of water prehydrolysis combined with steam explosion pretreatment had a significant effect on the results of enzymatic hydrolysis of wheat straw. The conversion of cellulose increased with increasing prehydrolysis temperature and time from 64.8 to 91.7 %. Similar results were observed for the conversion of xylan from 73.7 to 92.4 %. With increasing of prehydrolysis temperature and time, the amount of inhibitors in hydrolysates decreased. The recommended conditions for water prehydrolysis at two-stage pretreatment of wheat straw correspond to temperature of 160°C and time of 60 min.

Effect of steam explosion temperature on wheat straw enzymatic hydrolysis

Wheat straw is an abundant and readily available lignocellulosic material potentially suitable for the second generation bioethanol production. Steam explosion was investigated as a suitable pretreatment method. Effect of steam explosion temperature on wheat straw enzymatic hydrolysis was investigated. Optimum steam explosion temperature at around 200°C was determined based on concentration of monosaccharides in hydrolysates, conversion of cellulose and xylan and yield of monosaccharides from wheat straw. This corresponds to creating conditions resulting in sufficient damage to the lignocellulose structure which leads to higher enzyme accessibility. Lower temperature does not enable sufficient enzyme accessibility while excessively high temperature results in significant breakdown of monosaccharides and lignin and creation of inhibitors. The amount of originated inhibitors was also determined for each studied steam explosion temperature.

Pyrolytic kinetics of steam exploded lignin by TG/DTG analysis

Steam exploded lignin (SEL) thermal decomposition was investigated by thermogravimetric technique (TG/DTG) within the temperature range from room temperature to 920°C under different heating rates (10, 20, 30, 40, and 50°C. min-1). Little differences in the mass losses with heating rates were observed from TG analysis. It was established that SEL pyrolysis consisted of three main stages: water evaporation (< 200°C); devolatilization of organic volatiles (200-600°C); and char formation (> 600°C). The kinetic processing of non-isothermal TG/DTG data was performed by model-free methods proposed by Flynn-Wall-Ozawa (FWO) and Kissing-Akahira-Sunose (KAS). The average activation energies calculated from FWO and KAS methods are 74.2 kJ. mol-1 and 173.2 kJ. mol-1, respectively. Experimental results showed that values of kinetic parameters from both methods were analogous and could be successfully applied to understand the complex degradation mechanism of SEL. It is also helpful to achieve a better understanding of the devolatilization process of different type of biomass.

Effect of steam explosion on enzymatic hydrolysis of various parts of poplar tree

The effect of steam explosion on enzymatic hydrolysis of various parts of poplar tree (heartwood, sapwood and 1-year coppice) was investigated. These parts were milled, the obtained sawdust was chemically analysed and then steam explosion of 0.7 mm poplar particles at temperature of 205°C was performed. Concentration of monomers obtained after enzymatic hydrolysis was considered as the main indicator for cellulose accessibility. Analysis of high performance liquid chromatography showed that non-treated poplar sawdust does not enable sufficient cellulose accessibility, while excessively high temperature and rapid pressure release resulted in substantial breakdown of polysaccharides and lignin and formation of inhibitors. The concentration of monomers increased gradually in the order of coppice, sapwood and heartwood. Steam exploded heartwood gave the maximum monosaccharides concentration of 90.0 g.L-1 after 72 hours of enzymatic hydrolysis. However, glucose concentration culminated after 48 hours of this hydrolysis. This corresponds to the best holocellulose accessibility for enzymes. The maximum concentration of inhibitors (9.3 g.L-1) was determined for poplar coppice after 24 hours of enzymatic hydrolysis.

Various lignocellulosic raw materials pretreatment processes utilizable for increasing holocellulose accessibility for hydrolytic enzymes Part II. Effect of steam explosion temperature on beech enzymatic hydrolysis

Beech wood is one of the most abundant species and the most harvested hardwood in Slovak Republic. The structure and chemical composition predetermines beech wood for the second generation bioethanol production. Steam explosion of beech wood from industrial treatment was investigated as a suitable pretreatment method. The effect of steam explosion temperature on beech sawdust enzymatic hydrolysis was investigated. Optimum steam explosion temperature at around 180°C was determined based on concentration of monosaccharides in hydrolysates and concentration of enzymatic hydrolysis inhibitors such as formic acid and acetic acid from beech sawdust. This corresponds to creating conditions resulting in good disintegration to the lignocellulosic structure which leads to increased cellulose accessibility. Non-treated beech sawdust does not enable sufficient cellulose accessibility while excessively high temperature results in significant breakdown of monosaccharides and lignin and formation of inhibitors. The concentration of inhibitors was also determined for each studied steam explosion temperature. Based on steam explosion of beech sawdust, the effect of severity factors was investigated to find the optimum conditions of steam explosion pretreatment on cellulose and xylan recovery of beech wood. The obtained optimum steam explosion temperature corresponds to severity factor R0 = 3.36 (180°C, 10 minutes).

The concentration of selected heavy metals in poplar wood biomass and liquid fraction obtained after high temperature pretreatment

The concentration of selected heavy metals: chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu) and zinc (Zn) in 5-year-old wood of Populus trichocarpa before and after steam explosion (SE) and liquid hot water (LHW) pretreatments was studied. The concentration of the above heavy metals in the liquid fraction obtained after pretreatments was also studied. The studied problem of heavy metals in lignocellulosic biomass is an interesting and important issue in the context of bioethanol production technology. An X-ray fluorescence spectrometer (XRF) was used to analyse the concentration of heavy metals. The change of concentration of the tested elements in wood biomass after pretreatment was small (except for iron). On the other hand, the average concentration of iron in wood biomass of a 5-year-old Populus trichocarpa, after SE and LHW with duration of the pretreatments 15 and 60 min, increased about 24-fold to 28-fold, comparing to its average concentration in native wood. During the pretreatment process, wood biomass absorbed the iron that at high temperatures passed from the pretreatment equipment to the solution. The average concentration of the elements under research in liquid fraction obtained during SE and LHW of wood biomass with duration of the pretreatments 15 and 60 min was at a low level.