THE EFFECT OF WEATHERING ON SURFACE CHARACTERISTICS OF CHEMICALLY MODIFIED SCOTS PINE (PINUS SYLVESTRIS) WOOD

Scots pine (Pinus sylvestris L.) sapwood of 200 × 20 × 80 mm3 (L×R×T) was treated with both cell wall filling and lumen filling chemical agents (low-molecular phenol-formaldehyde, bio-oil, N-methylol/N-methyl compounds, sorbitol-citric acid, polysiloxane), which were fixed inside the wooden structure during heat-curing processes. The present study investigated the impact of the appointed chemical modifications on the surface characteristics of wood, which was addressed by measurements of the surface roughness (Ra), surface free energy (SFE), contact angles, wettability and its bonding quality. Independent of the chemical agents applied, Ra decreased as result of the chemical treatments, while SFE experienced a reduction. The Ra and SFE of both untreated and modified pine specimens increased after weathering processes. The weathering was appointed to cause a decrease in the equilibrium contact angle (θe) and an increase in the constant contact angle change rate (K-value). Increasing K-values after weathering for both untreated and modified pine specimens indicated their better wettability. Increasing wettability after weathering led to better adherence of acrylic paints on the surface of the Scots pine wood. In summary, the chemical modifications decreased the Ra and SFE of the pine sapwood, which may as a consequence affect the wettability and bonding quality of wood during outdoor exposure

Influence of the coating formulations and base papers on inkjet printability

At the coating were used two substrates, commercial base paper and base paper produced in pilot experimental paper machine. The printing quality varied at both base papers. The coating colours contain commercial silica and precipitated calcium carbonate pigments. As a binder was used polyvinyl alcohol and cationic starch combined with high-cationic polymer SMAI 1000. Colour gamut significantly improved when the inkjet ink contact angle decreased below 14° independently of the base paper. The order of coating colours effect on the base papers was similar. Application of silica pigment in the coating colour provided papers with the largest inkjet ink wetting, the best colour gamut area, print sharpness and smoothness. By using of polyvinyl alcohol, a high colour gamut area was reached but it resulted in a markedly low print sharpness in comparison with cationic starch. Coating of base paper produced in pilot experimental paper machine introduces papers with higher colour gamut and also print sharpness.

The effect of pigments and binders on inkjet print quality

The effect of silica and calcium carbonate pigments, polyvinyl alcohol and cationic starch binders combined with high-cationic polymers on physical-chemical and printing properties of coated papers were studied. The best printing properties were obtained with coating colour based on silica. Colour gamut significantly improved when the inkjet ink contact angle decreased below 15°. The water fastness was influenced with specific charge density of coating colour. Application of silica provided papers with the largest inkjet ink wetting, colour gamut area, print sharpness and surface roughness. By using of polyvinyl alcohol a high colour gamut area was reached but it resulted in a low print sharpness in comparison with cationic starch. High-cationic polymer poly-DADMAC showed a more significant effect on all printing properties of coated paper in comparison with SMAI 1000. The final inkjet print quality depends on structural and chemical properties of coating.