PRELIMINARY STUDY OF DEPENDENCE OF SMOKE AND CARBON MONOXIDE EMISSION ON HEAT RELEASE RATE FROM FAST-GROWING WOOD SPECIES

The aim of this paper is to create the model for prediction of carbon monoxide release rate (CORR) and smoke production rate (SPR) from heat release rate (HRR) of fast-growing wood species. The model is independent on wood species, thus is suitable for all fast-growing wood species. Three wood species hybrid poplar J-105 (Populus nigra × P. maximowiczii A. Henry), white willow (Salix alba L.) and black locust (Robinia pseudoacacia L.) were used for universal model creation. The heat release rate, smoke production rate and carbon monoxide release rate have been measured at three heat fluxes (25, 35 and 50 kW.m-2) by the cone calorimeter. The average values of CORR and SPR for all investigated wood species were 0.051 g.m-2.s-1 and 0.086 m2.m-2.s-1, respectively. Both dependencies of SPR and CORR on HRR have shown similar trends during the ignition phase (unstable trend) and during the intense burning phase (roughly linear increasing with HRR). The main difference was shown during the steady state phase (dependency of SPR on HRR is stable while dependency of CO on HRR is highly unstable). The results also proved a significant impact of wood density on these dependencies, thus, the neural network for prediction of SPR, CORR from HRR was applied. The coefficients of determination R2 for trained neural networks, for both SPR and CORR, were achieved in the range from 0.96 to 0.97

Impact of temperature and ultraviolet radiation on changes of colour of fir and spruce wood

This study deals with the investigation of impact of temperature and ultraviolet (UV) radiation on spruce wood (Picea abies (L.) H. Karst.) and fir wood (Abies alba Mill.) colour changes. Samples of investigated woods species were loaded by temperatures of 110, 130, and 150°C and UV radiation (with 253.7 nm wavelength and 40 W m-2 intensity) during 72, 168, 336 and 672 hours. Colour changes were evaluated in the CIE Lab colour space. The neural network for prediction of both colour coordinates and total colour difference of spruce and fir wood was trained by data regarding exposure conditions (temperature, UV radiation and time) and by obtained results. Coefficient of determination (R2) of the neural network was above 0.99 for training, validation and testing. Average colour coordinates (± standard deviation) of the spruce and fir wood before exposure were L* = 80.08 ± 3.70, a* = 7.55 ± 2.13, b* = 21.56 ± 1.79, L* = 80.46 ± 1.91, a* = 6.84 ± 0.97, and b* = 18.90 ± 1.26, resp. Total colour differences after thermal loading were in the interval from ΔEab* = 3.76 ± 1.95 (spruce wood at 110°C) to ΔEab* = 45.37±1.46 (fir wood at 150°C). Total colour differences of both wood species exposed by UV radiation were approximately in intervals from ΔEab* = 12 to 13 (after 72 h) up to ΔEab* = 16 to 20 (after 168 to 672 h). Obtained results proven that both temperature and UV radiation have significant impact on the colour changes of the investigated woods.