Study on permeability of Cunninghamia Lanceolata based on steam treatment and freeze treatment

In order to improve the permeability of Cunninghamia lanceolata, the weight gain rate of C. lanceolata was taken as index. The effect of time, temperature and water content on the weight gain rate of impregnated wood was analyzed by frozen and steaming treatment. By comparing the weight gain rate under different modification methods, the optimal modification process was determined. The results indicate that the optimum parameters of C. lanceolata were saturated water content (-25°C and 8 h) at this time, the three-day gain rate of silica sol impregnated at normal temperature and pressure was 15.058%. After C. lanceolata is pre-treated by superheated steam, the weight gain rate of C. lanceolata, which in oven-dried specimen (120°C and 3 h) contents was the highest, at this time, the three-day gain rate of silica sol impregnated at normal temperature and pressure was 15.291%. By comparing the results of pre-freezing with the results of superheated steam treatment of C. lanceolata, the latter will increase the permeability of C. lanceolata better. Therefore superheated steam treatment should be chosen as an effective method for the pretreatment.

Optimization of laser cutting parameters for recombinant bamboo based on response surface methodology

A means for selecting the optimal process parameters for the laser cutting of recombinant bamboo, based on the design of experiments (DOE) approach, was presented. Recombinant bamboo with thicknesses of 5, 10, and 15 mm was cut by a CO2 laser. The parameters investigated were the laser power, air pressure, and cutting speed. The results were compared using a number of process responses which define the efficiency of the cutting, including the upper kerf (UK) width, lower kerf (LK) width, and the ratio of upper-to-lower kerfs. Mathematical models were developed to establish the relationship between the process parameters and response parameters; special graphs were drawn for this purpose. Finally, a numerical optimization was performed to find out the optimal process settings to achieve a minimumupper-to-lower kerf ratio.

Effects of medium-low temperature hydrothermal treatment on microstructure and dimensional stability of chinese sweetgum wood

To investigate the changes of microstructure and dimensional stability during hydrothermal treatment, the Chinese sweetgum (Liquidambar formosana Hance) wood samples were treated in a numerical show constant temperature water bath with temperature of 60, 80 and 100°C for 4 h. The dry shrinkage rate and water absorption of untreated and treated samples were measured. Scanning electron microscopy (SEM) was selected to observe and investigate the changes of wood microstructure, which caused by hydrothermal treatment. The results showed that dry shrinkage rate increased from 4.92% to 7.00% and 9.62% to 10.12% in tangential direction and radial direction, respectively. However, the shrinkage rate difference (SRD) as an index to evaluate possibility of wood deformation, decreased from 1.96 to 1.45, which meant the shape stability of treated samples improved. The water absorption increased from 93.15% to 112.11%. From the results of SEM, the most sediment on aspirated pits were removed and pit membrane was ruptured after treatment. It had positive effect on moisture migration and wood permeability. It is maybe the reason of the variation of water absorption and dry shrinkage rate.