Dynamic relationship between mechanical properties and chemical composition distribution of wood cell walls
Wood is a natural composite material with a complex structure. Its mechanical properties are mainly due to the cell walls. In order to investigate the relationship between mechanical properties and chemical composition of wood cell wall. Nanoindentation and Raman imaging were used to characterize the longitudinal mechanical properties and chemical composition distribution of wood fibers of three years old fast-growing poplar (Populus×euramericana cv. ‘74 /76’) during the growing season at different times. The results were showed that the content and distribution of cellulose and lignin are closely related to the mechanical properties of wood fiber cell walls, especially the cellulose for the longitudinal elastic modulus and the lignin for the hardness of cell walls. It was also demonstrated that the longitudinal elastic modulus and hardness of the secondary wall 2 layer (S2) were strongly correlated to the micro fibril angle (MFA) and crystallinity of cellulose during the active phase.