Effect of paperboard surface modifications on electrical conductivity of printed UHF RFID antennas

The effect of surface roughness and water contact angle of commercial paperboard before and after surface modification by calendering, coating and calendering and plasma treatment on the functionality of UHF RFID antennas printed with thermal transfer aluminum ribbon was evaluated. A hydrophilic surface was created by coating or plasma treatment, which improved the wettability of the paperboard surface, the spreading of the thermoplastic tie layer and the adhesion of the conductive aluminum layer. A new paper product was created with permanent surface wettability by coating, without the need for plasma treatment before printing. The plasma treatment provided time-limited wettability, needed only during printing, and made it possible to restore the original hydrophobic surface of the paperboard. In addition to the meaning of these surface modifications, the importance and need to reduce the surface roughness was confirmed, as the higher surface roughness of the paperboard limited the effect of the plasma treatment in terms of its printability and the functionality of the printed aluminum antenna. The printability of the paperboard and the functionality of the printed antennas were evaluated using electrical conductivity. The electrical conductivities of the dipole and inductor loop of the UHF RFID antennas printed on modified paperboards varied depending on the antenna design.

Effect of smoothing in calender and hot stamping machine on the properties of coated paperboards for printed electronics

The methods of coated paperboards smoothing with a hot stamping machine using a smooth metal die and a conventional calender were compared. The printing roughness required for printing electrical and electronic components was achieved by both smoothing methods. The printing roughness of the coated paperboards decreased after hot stamping by 18 to 42% and after calendering by 22 to 41% depending on the grade of coated paperboard. The stiffness of coated paperboards decreased after hot stamping by only 4 to 21%, while by up to 38 to 51% after calendering. The ratio of specific stiffness and printing roughness of coated paperboards after hot stamping ranged from 2.5 to 8.1 mN. μm-2 and after calendering from 2.0 to 6.7 mN. μm-2. The stiffness of the coated paperboards decreased less after hot stamping, and that only in the printed electronics area, while after calendering the stiffness decreased significantly more in the whole profile. It can be assumed that packaging made from coated paperboards smoothed by hot stamping will have a lower weight and thus lower costs than packaging from calendered coated paperboards.

Paper substrates for inkjet printing of uhf rfid antennas

Conventional papers are not suitable for printed electronics because they have a rougher surface than the plastic film commonly used for electronics printing. The paper surfaces were modified by coating and calendering processes to reduce surface roughness and electrical resistance of inkjet-printed UHF RFID antennas. The composition of coatings, the main component which included aluminum oxide pigment, had an influence on the surface roughness, the surface pore content and the electrical resistance of the inkjet-printed UHF RFID antennas on coated papers. Papers coated with a mixture containing 25% polyvinyl alcohol binder in combination with the cationic polymer PDADMAC without glyoxal crosslinker had the lowest surface roughnesses and the lowest electrical resistances of the inkjet-printed antennas. As the coating basis weight increased, the electrical resistance of the antennas increased. Reduction of the electrical resistance of the antennas was achieved after calendering coated paper. The design of the antennas had a significant effect on their electrical resistance, which increased with the length of the antenna.

Comparison of thermal transfer and inkjet printing of UHF RFID tag antennas on paper substrates

UHF RFID printed antennas on conventional and experimentally coated papers by thermal transfer and inkjet technique were not conductive due to high surface roughness. Reducing the surface roughness of paper and hence the electrical resistance of the antennas printed by thermal transfer and inkjet printing was achieved by coating and subsequent calendering process. Papers for thermal transfer and inkjet printed of aluminum and silver antennas were prepared by coating with top functional coating, whose main component was pigment – precipitated calcium carbonate with addition of polyvinyl alcohol, cationic polymer PDADMAC and glyoxal. The desired quality of inkjet-printed silver antennas was achieved by using coated paper with a polyvinyl alcohol barrier layer and a top functional hydrophilic layer. Silver nanoparticles of inkjet ink require a sintering process to obtain a conductive printed trace. The microstructure and thickness of antennas printed by thermal transfer and inkjet technique were compared. Thermal transfer printing created a more homogeneous antenna with greater sharpness of drawing compared to inkjet printing.