Determining the coefficient of friction of wood-based materals for furniture panels in the aspect of modelling their shredding process

In order to improve the power selection of the drive unit for the shredding machines, the authors determine the values of friction coefficients used in the cutting force models. These values consider the friction between steel and such wood-based materials as chipboard, MDF and OSB. The tests concern laminated and non-laminated external surfaces and surfaces subjected to cutting processes. The value of the coefficient of friction for the tested materials is in the range: for the static coefficient of friction 0.77-0.33, and for the kinetic coefficient of friction 0.68-0.25. The highest values of the static and kinematic coefficient of friction were recorded for MDF (non-laminated external surface) and they were equal respectively: 0.77 and 0.68. In turn, the smallest values of the discussed coefficients were recorded for chipboard (laminated external wood-base surface), which were at the level of 0.33 and 0.25, resp.

An examination of the tool life and surface quality during drilling melamine faced chipboard

An analysis of the cutting process and tool wear during machining from metal materials has been the subject of many studies. On the other hand, the tool life when machining from wood materials has not received much attention. Optimisation of the cutting process consists of the appropriate selection of major processing parameters as the cutting depth, feed rate and cutting speed in order to ensure adequate machining accuracy at minimum cost, and appropriate process efficiency. Here, we present the results of experimental tests of wearing drills with carbide blades during processing of melamine faced chipboard (MFC). To evaluate the surface quality of the chipboard the maximum radius and area of delamination around the chipboard blind hole are adopted. These parameters are determined independently at the hole entry and exit. Statistical analysis of results using multifactor analysis of variance was carried out. The tool life of drills depends on many combinations of cutting parameters and the wear of the drill blade. In the drilling process, the value of the thrust force mainly depended on wear of tool flank and the feed rate. The cutting speed has little effect on the amount of thrust force and cutting torque.

Determination of maximum torque during carpentry waste comminution

In order to elaborate design guidelines for developing efficient and possibly most energy saving mills for comminuting carpentry, OSB and MDF waste, there have been performed some tests aimed at torque demand on the working unit of the machinery participating in that process. The tests were carried out on a cylindrical wood chipper. There were indicated the maximum, minimum and average values of the torque, indispensable for the comminution of boards with defined geometric sizes (5 – 50 mm wide ) and thickness (3 – 28 mm). The value of torque required in the comminution of carpentry waste increases with growing cross section, and the torque vs. cross section relation is approximately linear. The presented values may constitute not only a set of input data indispensable for modeling the power which is necessary for the comminution process, but they can also enable the validation of the existing cutting models with a single cylinder cutter.