A NUMERICAL MODEL FOR ANALYZING CROSS LAMINATED TIMBER UNDER OUT OF PLANE LOADING

This paper targets the validity of a novel numerical model for analyzing CLT under out of plane loading. This numerical model was initially developed for determining the shear lag effect that appears in laminated thin walled composite beams. A parametric study was conducted in order to determine the influence of orientation of layers in CLT panels on bending strength and deflection. For confirming the accuracy of the proposed model, the results from the numerical model are compared with the external results of the computer software Ansys. The differences in bending stress vary from 0.27% to 1.69% depending on the orientation of layers and for deflection the differences are ranged from 2.25% to 7.42%. A numerical study was conducted and obtained data corresponds to results obtained from experimental study. It was concluded that the proposed numerical method can enough precisely predict the behavior of CLT under out of plane loading

Comparative analysis of composite timber-concrete ceiling systems

This paper compares two concepts of composite timber concrete ceilings and their uncoupled alternatives based on a parametric study by comparing the final deflections of individual variants and at the same time considering according to the ultimate limit state. It includes a comparison of coupled and uncoupled variants while maintaining the same boundary conditions as the load, the thickness of the ceiling structure and the load width. By considering other factors, we can achieve more optimal variant, thanks to more accurate consideration of the required boundary conditions such as the complexity of installation or fire resistance. The purpose of this paper is to simplify the optimal selection of the ceiling structure based on the suitability of the supporting structure.