FRACTURE MECHANISM ANALYSIS OF HIGH-DENSITY FIBREBOARD BASED ON DIGITAL IMAGE CORRELATION TECHNOLOGY

This paper analyses the scattering images of the bending deformation of high-density fibreboards based on the digital image correlation (DIC) technique, so as to study its mechanical deformation law. Three-point bending tests were carried out on fibreboards using a mechanical testing machine with a non-contact measuring system. The measured values of the displacements of the grid nodes in the region of interest (ROI) were combined with the Moving least squares (MLS) method to construct the strains of the high-density fibreboards at different loading forces, thus deriving the strain values of the fibreboards during the bending deformation process. To further analyze its force deformation mechanism, this paper used a portable electron microscope and scanning electron microscope to analyze the damage situation at the fracture damage, and at the same time, it verified that the constructed strain field model was accurate

Determination of mode I fracture properties of European spruce

In this paper an efficient procedure for obtaining a cohesive law for Mode I timber fracture (crack opening), based on the Double Cantilever Beam (DCB) tests is given. DCB tests were performed on ten European spruce specimens in order to determine the energy release rate vs crack length (R curves). Two crucial parameters – crack length during the experiment and the crack tip opening displacement were obtained using 2D Digital Image Correlation (DIC) technique. In order to determine accurate fracture resistance (R curve), procedure which includes calculating cumulative released energy was employed. The cohesive law for Mode I fracture of wood was obtained by differentiation of the strain energy release rate as a function of the crack tip opening displacement. This cohesive law is further implemented in the successful numerical modelling of failure modes in large-scale end-notched glulam beams which were experimentally tested in four-point bending configuration.