Waste agglomerated wood materials as a secondary raw material for chipboards and f ibreboards Part II. Preparation and characterisation of wood f ibres in terms of their reuse

The paper describes a process for the preparation of fibre from waste wood particleboards (PB), oriented strand chipboard (OSB) and medium density fibreboard (MDF). The purpose of recycling of agglomerated wood materials is to reuse them for the production of fibrous materials. The agglomerated materials disintegrated after the initial destruction were further processed under the specified conditions with respect to the moisture content, their type, adhesive used, and properties of final particles – wood chips. The obtained wood particles were characterized by the fractional composition of chips. The resulting chips were mechanically defibred with subsequent characterization of fiber obtained for its reuse in the manufacture of MDF. A quantity of formaldehyde released into the water when cooking waste MDF and PB was set up depending on the cooking time. Residual level of formaldehyde is the main chemical load that determines the amount of waste material that can be reused for production of new panels based on ureaformaldehyde adhesives.

Impact of electrical cables embedded into oriented strand board on critical heat flux

The paper deals with the research of electrical cables embedded in surface grooves of OSBs and its impact on the critical heat flux. An OSB type 3 board (structural board for use in dry or humid environments) and an electrical cable with fire reaction class B2ca have been investigated. Four different configurations of grooves were investigated. The first configuration consisted of an OSB without grooves (control sample). The second configuration consisted of an OSB with a single groove in the centre in which the electrical cable was mounted. In the third and fourth configurations, there were three and five grooves, respectively in which the electrical cables were mounted (the width of the grooves and the spacing between them was 9 mm). The critical heat flux was calculated from the ignition times at five different heat fluxes (30, 35, 40, 45 and 50 kW.m-2) by using a cone calorimeter. The obtained data showed that the OSB without grooves (first configuration) shows the lowest critical heat flux (8.6 kW.m-2) and the lowest standard deviation of ± 0.5 kW.m-2 (lower ignition resistance) compared to the other configurations (critical heat flux in the range from 9 to 10 kW.m-2 and standard deviation from 3.1 to 3.2 kW.m-2).