The effect of a phenol-formaldehyde adhesive reinforcement with nanocellulose on the pressing parameters of plywood

Research on improving the reactivity of phenol-formaldehyde (PF) resin and the possibility of lowering the pressing parameters of wood-based materials manufactured with its participation are still progressing. Due to a number of favorable properties, nanocellulose (NCC) is gaining more and more popularity as a modifier of wood adhesives. Therefore, the objective of the study was to assess the possible reduction of plywood pressing parameters due to the reinforcement of PF resin with NCC. Based on the bonding quality results it was found that there is a possibility to reduce pressing time by 25% and pressing temperature by 7%. Moreover, the outcomes of mechanical properties (modulus of elasticity and bending strength) of manufactured plywood indicate that theoretically it could be possible to decrease the pressing parameters even more. However, the shear strength of the glue joints was considered to be a limiting factor for further reduction. The results of delamination test show that plywood bonded with phenolic resin have no tendency to delaminate. Thus, it can be concluded that NCC can be used as a modifier for PF resin which can contribute to the reduction of pressing time and pressing temperature during the plywood manufacturing process.

Effect of board density, resin percentage and pressing temprature on particleboard properties made from mixing of poplar wood slab, citrus branches and twigs of beech

In this study, construction conditions of homogenous particleboard manufactured from mixing of poplar wood (Populus alba) slab, citrus branches and beech (Fagus orientalis) twigs have been investigated. The density of particleboard at three levels of 0.65, 0.7 and 0.75 g.cm-3, the amounts of resin at two levels of 9 and 11% and the amounts of pressing temperature at two levels of 160 and 170° C were considered. Increasing the density from 0.65 to 0.75 led to an increase in MOR, MOE and IB. By increasing the density, water absorption of particleboard decreased but its thickness swelling increased. By increasing the resin percentage the mechanical properties of particleboard improved, although this improvement was not statistically significant. Furthermore, by increasing the resin percentage the dimensional stability of particleboard improved partially. Not only did increasing the pressing temperature have any significant effect on the improving of mechanical properties of the particleboard, but also it has even led to a decrease in IB. Increasing the pressing temperature reduced the water absorption of particleboard in the short term (2 hours) while this increase led to a further increase in the thickness swelling of particleboard.