Influence of size effect on the bearing capacity of the axially compressed components of corn straw integrated material and its calculation method

Our paper proposed a new type of environmentally friendly biomass material, corn straw integrated material (CSIM). In this paper, the ultimate bearing capacity of the axially compressed components under parallel, vertical and combined texture-integrated methods are compared and analyzed through the experimental research. The influence of size effect on the bearing capacity of the axially compressed components of the CSIM is determined, and the calculation method of the bearing capacity of the axially compressed components under vertical texture-integrated method is proposed. Results showed that the slenderness ratio of 35 was the dividing point between the strength and instability failures of the CSIM axially compressed component, and the calculated value of the revised bearing capacity calculation method agreed with the test value. The result is very close to the American National design specification for wood construction (ANSI/AF&PA NDS, 2005).

The utilization of tomato stalk in fiber production: NAOH and CAO pulping process

This study was conducted to explore the utilization of tomato stalk in the paper industry. Fiber morphology of the material was determined according to standard test methods and average fiber length was found to be 980 μm and the width of the fiber was 15 μm. As a result, slenderness ratio was resolved to be around 60. This was considered to be comparable fiber with the most of the hardwood species. Tomato stalks were cooked with soda and lime in a separate process. Screened pulp yield was determined to be 35-45 %. Soda pulp of tomato stalks showed good mechanical properties when temperature raised to 135ºC and low alkali concentration (10 %) and lime pulps showed properties as well as that soda pulp at 135ºC and high alkalinity ratio (30 %).