VARIABILITY OF ANATOMICAL AND MORPHOLOGICAL TRAITS OF PINUS NIGRA AND PINUS SYLVESTRIS SEEDLINGS AFFECTED BY DIFFERENT CONTAINER TYPE

In the paper was analysed the influence of three different container types, used for cultivation of Pinus nigra and Pinus sylvestris seedlings, on dimensions of their anatomical (resin ducts width, resin ducts number, tracheid number, tracheid width, wood rays height) and morphological (height, root collar diameter, sturdiness coefficient) elements, and on proportion of wood, bark and pith, as well. Two-factorial ANOVA showed that container type affects a lot all investigated anatomical traits by both species, but on the other side, these species varied between each other just in terms of tracheid width and wood rays height. Based on descriptive statistics, significantly lower values of all studied anatomical elements were recorded by biodegradable compared to plastic containers. As for P. nigra seedlings, they showed the best anatomical performance in Plantagrah I, while Hiko V-120 SS was the most suitable for P. sylvestris. The highest proportion of pith and bark was recorded in biodegradable container. As for morphological parameters, such as height and root collar diameter, higher values were recorded by plastic containers

Trait-based ecology using conduits comparison approach

This study conducted to quantify and compare the variation among root, stem, and branch wood of Acacia salicina and Albizia lebbeck. Results of this study revealed that the proportion of wood elements is quite similar. The wood cells decrease in length and width (diameter) in the acropetal direction. These traits indicate the principles of the hydraulic architecture of a tree as a perfect adaptation for maintaining the pressure gradient. A. lebbeck has the higher hydraulic conductivity and non-lumen fraction value. It indicates that A. lebbeck has a higher photosynthetic capacity and specific gravity. Thereafter, all of the vulnerability indexes are greater than 3, so both of examined species categorise as mesomorphy species. However, in arid circumstance, A. salicina is potentially much stronger to withstand drought-prone than A. lebbeck.