Determination of Urea-Formaldehyde Resin Content in Poplar Fiber Based on Hyperspectral Techniques

In this experiment, poplar fibers containing 0%, 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 25% and 30% of urea-formaldehyde resin were prepared. A model for the detection of urea-formaldehyde resin content in poplar fibers was established by the hyperspectral near-infrared imaging system combined with relevant algorithms. The spectral images of poplar fibers containing different contents of urea-formaldehyde (UF) resin were measured separately using hyperspectral imager. The results of four preprocessing methods, namely mean centering (MC), multiple scattering correction (MSC), standard normal variables (SNV) and first-order derivative (1-Der) were analyzed, and the optimal preprocessing method was selected as SNV. The band combinations with the highest correlation with the urea-formaldehyde resin content were compared and analyzed with the full-band model to establish the partial least squares regression (PLSR) model. The experimental results show that the hyperspectral imaging system combined with the corresponding algorithm can achieve rapid detection of UF resin content in poplar fibers, and the results of this study provide technical support and theoretical reference for determination of resin content in ultra-thin fiberboard production. The method is an innovative model for the determination of UF resin in wood fibers.

Effect of board density, resin percentage and pressing temprature on particleboard properties made from mixing of poplar wood slab, citrus branches and twigs of beech

In this study, construction conditions of homogenous particleboard manufactured from mixing of poplar wood (Populus alba) slab, citrus branches and beech (Fagus orientalis) twigs have been investigated. The density of particleboard at three levels of 0.65, 0.7 and 0.75 g.cm-3, the amounts of resin at two levels of 9 and 11% and the amounts of pressing temperature at two levels of 160 and 170° C were considered. Increasing the density from 0.65 to 0.75 led to an increase in MOR, MOE and IB. By increasing the density, water absorption of particleboard decreased but its thickness swelling increased. By increasing the resin percentage the mechanical properties of particleboard improved, although this improvement was not statistically significant. Furthermore, by increasing the resin percentage the dimensional stability of particleboard improved partially. Not only did increasing the pressing temperature have any significant effect on the improving of mechanical properties of the particleboard, but also it has even led to a decrease in IB. Increasing the pressing temperature reduced the water absorption of particleboard in the short term (2 hours) while this increase led to a further increase in the thickness swelling of particleboard.