Effects of fire retardants on mechanical properties and water resistance of Pinus massoniana particleboard

Pinus massoniana Lamb. wood particleboards processed by inorganic and organic fire retardants of two densities were prepared by isocyanate and MUF resin. Variations of internal bonding strength (IB), modulus of rupture (MOR), modulus of elasticity (MOE) and thickness swelling rate (TS) of particleboard were observed. Results demonstrated decreasing of IB from 0.81 MPa to 0.42 MPa and 0.36 MPa, MOR from 17.3 MPa to 12.5 MPa and 12.3 MPa, MOE from 1840 MPa to 1328 MPa and 1117 MPa, and increasing of TS from 5.2% to 15.1% and 11.2%, respectively, for the treated MUF particleboards of density 0.65 g.cm-3. Similarly, decreasing of IB from 0.93 MPa to 0.66 MPa and 0.64 MPa, MOR from 16.2 MPa to 10.6 MPa and 12.1 MPa, MOE from 1246 MPa to 1573 MPa and 1466 MPa, and increasing of TS from 6.7% to 7.1% and 6.0%, respectively, when isocyanate adhesive was used. The similar changes were showed when the density of particleboard was 0.75 g.cm-3. Improving density of particleboard appropriately and decrease density difference between the surface to chip layers could make the profile density curve tend to be stable, which could get a relatively high mechanical strength and water resistance. Synergistic effects between isocyanate and fire retardants was confirmed. The particleboard prepared with isocyanate was obviously superior to that prepared with MUF resin in all performances.

Short note. effect of hot-pressing parameters on selected properties of flakeboard

Physical and mechanical properties of flakeboards produced from radiata pine flakes under different hot-pressing conditions were investigated in this study. The flakeboard mats were hot-pressed at 2.8 MPa with two different temperatures (170 and 190°C) and three different durations (7, 10, and 15 min). At the 170°C of hot-pressing temperature, the highest bending strength was found in the flakeboards pressed for 7 min while the highest modulus of elasticity was found in the flakeboards pressed for 15 min. The highest internal bond strength was found to be 0.13 MPa for the flakeboards pressed at 190°C for 15 min. The thickness swelling and water absorption of flakeboards pressed at 190°C were lower than those of the flakeboards pressed at 170°C. The control of hot press temperature and duration appears an effective method to enhance serviceability of flakeboard.

Development of mimosa tannin-based adhesive cross-linked by furfuryl alcohol-formaldehyde and epoxy resins

A furfuryl alcohol-formaldehyde resin was synthesized as a crosslinker in our laboratory to develop a mimosa tannin-based adhesive with good water resistance. 13C nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy indicated that furfuryl alcohol reacted with formaldehyde under acidic conditions and that–CH (–OH) – groups to be the ones involved in the crosslinking of mimosa tannin-furfuryl alcoholformaldehyde adhesive (TFF). The wet shear strength of TFF-bonded plywood suggested that the cured TFF adhesive was better than mimosa tannin-furfuryl alcohol (TF) adhesive. The water resistance of TFF adhesive cross-linked with 9% epoxy resin was also higher than those of TFF and TF adhesives.

Water resistant plywood of increased elasticity produced from European wood species

The paper investigates the possibility of producing the water-resistant plywood of increased elasticity with use of veneers attained from European wood species, such as alder, birch, beech, pine as well as linden, poplar, willow and spruce. Plywood was produced in two variants. Variant I of plywood was made from various wood species, yet the veneers were of the same thickness. In variant II the centre layer in each case was made from 1 mm thick pine veneer and the face layers were made from 1.4 mm thick veneers of various wood species. The produced plywood was subjected to tests on modulus of rupture, modulus of elasticity and tensile strength, bond quality and compression ratio. Specific values of modulus of rupture and modulus of elasticity were also determined taking into consideration the differences in the thickness of applied veneers. Based on these investigations, the authors concluded that, regardless of the manufacturing method, the highest values of modulus of rupture as well as modulus of elasticity and bond quality are achieved for plywood made from linden, poplar, willow and spruce. The change in the plywood structure (variant II) resulted in a considerable decrease in the values of modulus of rupture and modulus of elasticity (and their specific values) both parallel and across the grain. The lowest values of these parameters were obtained for poplar, linden and willow plywood. What is more, as a result of the applied procedure the bond quality of the produced plywood increased and the compression ratio was reduced. Taking the above into account, we can assume that linden, poplar and willow wood is an optimum choice for the face veneers of plywood with increased elasticity. The centre layer of this kind of plywood can be made from pine veneer of lesser thickness.