INCREASING THE EFFICIENCY OF ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSIC MATERIALS BY FREEZING PRETREATMENT

This paper describes the differences between the efficiency of enzymatic hydrolysis of selected lignocellulosic materials after pretreatment by cyclic freezing and thawing. It also discusses the analysis of the positive effect of alkaline conditions on pretreatment. The selected materials were Populus alba L., wheat straw from Triticum aestivum L. and Cannabis sativa. Three pretreatment methods were used to compare the efficiency of enzymatic decomposition of cellulose and cellulose accessibility. The best results show the wheat straw pre-treated at -20°C in the freezer with NaOH addition with a concentration of monosaccharides of 56.6 g.l-1 compared to initial hydrolysed material with a concentration of monosaccharides of 24.4 g.l-1. The results show better digestibility of grass compared to wood dendromass

Effect of prehydrolysis on enzymatic hydrolysis of two-stage pretreated wheat straw

The effect of water prehydrolysis conditions, which was used as the first stage of wheat straw pretreatment, on the composition of filtrates was analysed. Many of the substances that are present in the prehydrolysis filtrates are broadly used and thus they contribute to improvements in the efficiency of bioethanol production. Prehydrolysis was carried out at temperatures of 140, 160 and 180°C and times of 30, 60 and 120 min. Xylose and its oligomers were the most represented in prehydrolysis filtrates, their yields increased up to 12.1 % with increasing weight of wheat straw removed up to 28.6 %. Besides xylose and glucose, acetic acid, formic acid and the phenolic compounds were also present in the prehydrolysis filtrates. At 160 and 180°C, levulinic acid and furfural and hydroxymethylfurfural, respectively, were also present. The solid fractions of wheat straw were subjected to steam explosion under the same conditions at 200°C for 2 min. Two-stage pretreated wheat straw was subsequently enzymatically hydrolysed. The conditions of water prehydrolysis combined with steam explosion pretreatment had a significant effect on the results of enzymatic hydrolysis of wheat straw. The conversion of cellulose increased with increasing prehydrolysis temperature and time from 64.8 to 91.7 %. Similar results were observed for the conversion of xylan from 73.7 to 92.4 %. With increasing of prehydrolysis temperature and time, the amount of inhibitors in hydrolysates decreased. The recommended conditions for water prehydrolysis at two-stage pretreatment of wheat straw correspond to temperature of 160°C and time of 60 min.

Effect of steam explosion temperature on wheat straw enzymatic hydrolysis

Wheat straw is an abundant and readily available lignocellulosic material potentially suitable for the second generation bioethanol production. Steam explosion was investigated as a suitable pretreatment method. Effect of steam explosion temperature on wheat straw enzymatic hydrolysis was investigated. Optimum steam explosion temperature at around 200°C was determined based on concentration of monosaccharides in hydrolysates, conversion of cellulose and xylan and yield of monosaccharides from wheat straw. This corresponds to creating conditions resulting in sufficient damage to the lignocellulose structure which leads to higher enzyme accessibility. Lower temperature does not enable sufficient enzyme accessibility while excessively high temperature results in significant breakdown of monosaccharides and lignin and creation of inhibitors. The amount of originated inhibitors was also determined for each studied steam explosion temperature.

Enzymatic hydrolysis of extruded wheat straw with addition of sodium hydroxide and calcium hydroxide

Extrusion pretreatment of wheat straw in a single screw extruder was investigated in terms of effectiveness of enzymatic hydrolysis and the formation of fermentation inhibitors. The effect of sodium hydroxide in extrusion pretreatment was compared with calcium hydroxide. The accessibility of wheat straw structure to hydrolytic enzymes increased with NaOH and Ca(OH)2 loadings, whereby more with the addition of NaOH. With 6% w/w of NaOH loading, the conversion of polysaccharides was 76.1% and with the same Ca(OH)2 loading it was 47.3%. The conversion of polysaccharides with 12% w/w of Ca(OH)2 loading was 66.6%. Without alkali in extrusion pretreatment, the conversion of polysaccharides was only 36.7%. The polysaccharides conversion of original extruded wheat straw was about 1.5 to 3.3% higher in comparison to washed extruded wheat straw. Fermentation inhibitors such as lignin, acetic and formic acid are primarily formed in the presence of alkali during extrusion pretreatment, most of which was lignin. Alkaline extrusion is a suitable method for pretreatment of lignocellulosic biomass.

Thermopressed binderless fiberboards from wheat straw by adding black liquor

For the shortage of timber resources and the sake of the formaldehyde emissions, people desire to use non-adhesive bonding technology. This paper studies the chemical composites of black liquor, at different contents ranging from 20 to 40 wt%, into fiberboards made from wheat straw pulp. Adding a little black liquor has positive effect on qualities of boards, contributing to presence of proteins and lignin in black liquor, but adding too much liquor would decrease properties of them for the ash content. The FT-IR measurements indicated that there are more low-molecular substance and hydrogen bonds producing after fining and thermopressing processes. The thermo analysis were conducted to better understand these results. The physical and mechanical properties of the resulting fiberboard were evaluated. The results showed that binderless fiberboards by adding 30 wt% have good mechanical and water resistance properties which can partly satisfy the requirements of the relevant standards specifications.

Various lignocellulosic raw materials pretreatment processes utilizable for increasing holocellulose accessibility for hydrolytic enzymes Part I: Evaluation of wheat straw pretreatment processes

New requirements for the biofuels industry force individual enterprises to develop various procedures for newly selected substrates pretreatments that could be applicable in processing of large quantities of raw materials. Even greater pressures are on second-generation biofuels producers justified by selection of waste lignocellulosic substrates and methods of substrate processing. Among the most suitable lignocellulosic raw materials in Slovak Republic (SR) for 2G bioethanol production is wheat straw. This raw material (Senec region, SR) for enzymatic hydrolysis was pretreated by dry milling (Brabender), cyclic freezing and thawing, wet milling (Sprout Waldron), two-step process of steam explosion at 180°C and extrusion at 145°C and one-step process of steam explosion at different temperatures. Wheat straw holocellulose accessibility was tested by adsorption of three commercially available dyes (Pylam Products Company, Inc., USA). Absorptivity coefficient of each dye at its maximum wavelength was determined from individual calibration curves of dyes and their values resulted ranging from 13.78 to 19.52 dm3.g-1.cm-1. The absorption of solution was measured and concentration of residual dye was calculated at given wavelength. The accessibility of holocellulose contained in wheat straw pretreated by steam explosion was controlled by SEM (scanning electron microscope) in correlation with the ratio of adsorbed dyes according to the modified Simons’ method.