WOOD ANATOMY INDICES AND REVEGETATION POTENTIALS OF THREE TAXA OF THE EUPHORBIACEAE

The suitability of three plant taxa namely: Bridelia ferruginea, Hura crepitans and Ricinodendron heudelotii as potential revegetation plants in desertified areas were assessed using Calquist’s wood anatomy indices (vulnerability and mesomorphy) using an ecological survey design. Temporal and permanent slides of transverse sections were prepared and vessel length and diameter (µm) measured using a Motic B3 Compound Microscope and vessel density determined for each of the plant taxa. The observed high vulnerability and high mesomorphy index values in Hura crepitans and Ricinodendron heudelotii indicates that they did not fall within the required ranges of 0 – 2.5 and 0 – 99 for the two indices respectively and cannot adapt well in xeric areas. However, Bridelia ferruginea fell within the range. In conclusion, Hura crepitans and Ricinodendron heudelotii are mesophytes while Bridelia ferruginea was xerophytic and can flourish in xeric areas, therefore, it possesses a great revegetation potential

ECOLOGICAL AND FUNCTIONAL COMPARISON OF WOOD ANATOMY ON SOME TREE GENERA IN THE SOUTHERN NIGERIA

This work aimed at utilizing wood anatomical traits to assess the compatibility or suitability of 9 species in the families where they belong since the earlier classification depended only on morphological characters and also to possibly deduce the permeability of their vessel lumen during wood treatment with preservatives of equal or different viscosity. Comparative stem anatomy of tree taxa Antiaris toxicaria Lesch. (Moraceae), Ficus exasperate Vahl. (Moraceae), Milicia excelsa Welw. (Moraceae), Dacryodes klaineana Lam. (Burseraceae) Canarium schweinfurthii Engl. (Burseraceae), Dacryodes edulis Lam. (Burseraceae), Erythrophleum suaveolens Taub. (Fabaceae), Pelthophorum pterocarpum De Cand. (Fabaceae), Pterocarpus soyauxii Taub. (Fabaceae) was studied. Observations on the transverse, radial-longitudinal and tangential-longitudinal sections showed that there were vast variations and few similarities in the vessel, axial parenchyma, ray cell and storied fibre distributions within and across families. Variations across the three ecological zones were found. The highest vessel diameter occurred in C. schwenfortii with 222.84µm (Burseraceae) followed by F. Exasperate with 196.42 µm (Moraceae) and P. pterocarpum with 187.23 µm (Fabaceae) across the three ecological zones. Vessel diameters were in direct proportion with the amount of rainfall while vessel frequencies were in negative proportion with the amount of rainfall across the ecological zones. Qualitative properties were not significantly affected by either temperature or rainfall

Trait-based ecology using conduits comparison approach

This study conducted to quantify and compare the variation among root, stem, and branch wood of Acacia salicina and Albizia lebbeck. Results of this study revealed that the proportion of wood elements is quite similar. The wood cells decrease in length and width (diameter) in the acropetal direction. These traits indicate the principles of the hydraulic architecture of a tree as a perfect adaptation for maintaining the pressure gradient. A. lebbeck has the higher hydraulic conductivity and non-lumen fraction value. It indicates that A. lebbeck has a higher photosynthetic capacity and specific gravity. Thereafter, all of the vulnerability indexes are greater than 3, so both of examined species categorise as mesomorphy species. However, in arid circumstance, A. salicina is potentially much stronger to withstand drought-prone than A. lebbeck.