EFFECT OF PHENOL FORMALDEHYDE RESIN IMPREGNATION ON NANODYNAMIC VISCOELASTICITY OF PINUS MASSONIANA LAMB IN WET STATE

We evaluated the effects of phenol formaldehyde (PF) resin modification on Masson pine (Pinus massoniana Lamb.) wood cell wall in wet states. The penetration degree of PF resin into wood cell was determined using confocal laser scanning microscopy (CLSM). The micromechanical properties of PF-modified wood cell walls in wet state were analyzed by quasi-static nanoindentation and dynamic modulus mapping techniques. Results showed that the PF resin significantly affected the static viscoelasticity and nanodynamic viscoelasticity of wood cell walls in oven-dried and wet states. The cell-wall mechanics increased at a PF resin concentration due to the increased bulking effects, such as decreased crystallinity of cellulose. Furthermore, the microfibrillar angle (MFA) of cell walls was lower than that of the control wood cell wall. The cell-wall mechanics of PF resin-modified sample decreased small than control sample in wet states

Dynamic relationship between mechanical properties and chemical composition distribution of wood cell walls

Wood is a natural composite material with a complex structure. Its mechanical properties are mainly due to the cell walls. In order to investigate the relationship between mechanical properties and chemical composition of wood cell wall. Nanoindentation and Raman imaging were used to characterize the longitudinal mechanical properties and chemical composition distribution of wood fibers of three years old fast-growing poplar (Populus×euramericana cv. ‘74 /76’) during the growing season at different times. The results were showed that the content and distribution of cellulose and lignin are closely related to the mechanical properties of wood fiber cell walls, especially the cellulose for the longitudinal elastic modulus and the lignin for the hardness of cell walls. It was also demonstrated that the longitudinal elastic modulus and hardness of the secondary wall 2 layer (S2) were strongly correlated to the micro fibril angle (MFA) and crystallinity of cellulose during the active phase.